225,752 research outputs found

    Fluorescent antibody detection of microorganisms in terrestrial environments

    Get PDF
    The fluorescent antibody technique and its use in direct microscopic examination of the soil is discussed. Feasibility analyses were made to determine if the method could be used to simultaneously observe and recognize microorganisms in the soil. Some data indicate this may be possible. Data are also given on two related problems involving the interaction of soil microorganisms with plant roots to form symbiotic structures. One was concerned with the developmental ecology and biology of the root nodule of alder and the second was concerned with the ectotrophic mycorrhizal structure on forest trees, especially pines. In both, the fluorescent antibody detection of the microbial symbiont both as a free living form in soil, and as a root inhabiting form in the higher plant was emphasized. A third aspect of the research involved the detection of autotrophic ammonia oxidizing microorganisms in soil

    The Microbial Community of a Terrestrial Anoxic Inter-Tidal Zone: A Model for Laboratory-Based Studies of Potentially Habitable Ancient Lacustrine Systems on Mars

    Get PDF
    Evidence indicates that Gale crater on Mars harboured a fluvio-lacustrine environment that was subjected to physio-chemical variations such as changes in redox conditions and evaporation with salinity changes, over time. Microbial communities from terrestrial environmental analogues sites are important for studying such potential habitability environments on early Mars, especially in laboratory-based simulation experiments. Traditionally, such studies have predominantly focused on microorganisms from extreme terrestrial environments. These are applicable to a range of Martian environments; however, they lack relevance to the lacustrine systems. In this study, we characterise an anoxic inter-tidal zone as a terrestrial analogue for the Gale crater lake system according to its chemical and physical properties, and its microbiological community. The sub-surface inter-tidal environment of the River Dee estuary, United Kingdom (53°21'015.40" N, 3°10'024.95" W) was selected and compared with available data from Early Hesperian-time Gale crater, and temperature, redox, and pH were similar. Compared to subsurface ‘groundwater’-type fluids invoked for the Gale subsurface, salinity was higher at the River Dee site, which are more comparable to increases in salinity that likely occurred as the Gale crater lake evolved. Similarities in clay abundance indicated similar access to, specifically, the bio-essential elements Mg, Fe and K. The River Dee microbial community consisted of taxa that were known to have members that could utilise chemolithoautotrophic and chemoorganoheterotrophic metabolism and such a mixed metabolic capability would potentially have been feasible on Mars. Microorganisms isolated from the site were able to grow under environment conditions that, based on mineralogical data, were similar to that of the Gale crater’s aqueous environment at Yellowknife Bay. Thus, the results from this study suggest that the microbial community from an anoxic inter-tidal zone is a plausible terrestrial analogue for studying habitability of fluvio-lacustrine systems on early Mars, using laboratory-based simulation experiments

    Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere

    Get PDF
    Dimethylsulphide (DMS) plays a major role in the global sulphur cycle. It has important implications for atmospheric chemistry, climate regulation, and sulphur transport from the marine to the atmospheric and terrestrial environments. In addition, DMS acts as an info-chemical for a wide range of organisms ranging from micro-organisms to mammals. Micro-organisms that cycle DMS are widely distributed in a range of environments, for instance, oxic and anoxic marine, freshwater and terrestrial habitats. Despite the importance of DMS that has been unearthed by many studies since the early 1970s, the understanding of the biochemistry, genetics, and ecology of DMS-degrading micro-organisms is still limited. This review examines current knowledge on the microbial cycling of DMS and points out areas for future research that should shed more light on the role of organisms degrading DMS and related compounds in the biosphere

    The debris disk - terrestrial planet connection

    Full text link
    The eccentric orbits of the known extrasolar giant planets provide evidence that most planet-forming environments undergo violent dynamical instabilities. Here, we numerically simulate the impact of giant planet instabilities on planetary systems as a whole. We find that populations of inner rocky and outer icy bodies are both shaped by the giant planet dynamics and are naturally correlated. Strong instabilities -- those with very eccentric surviving giant planets -- completely clear out their inner and outer regions. In contrast, systems with stable or low-mass giant planets form terrestrial planets in their inner regions and outer icy bodies produce dust that is observable as debris disks at mid-infrared wavelengths. Fifteen to twenty percent of old stars are observed to have bright debris disks (at wavelengths of ~70 microns) and we predict that these signpost dynamically calm environments that should contain terrestrial planets.Comment: Contribution to proceedings of IAU 276: Astrophysics of Planetary System

    Robust Patterns in Food Web Structure

    Get PDF
    We analyze the properties of seven community food webs from a variety of environments--including freshwater, marine-freshwater interfaces and terrestrial environments. We uncover quantitative unifying patterns that describe the properties of the diverse trophic webs considered and suggest that statistical physics concepts such as scaling and universality may be useful in the description of ecosystems. Specifically, we find that several quantities characterizing these diverse food webs obey functional forms that are universal across the different environments considered. The empirical results are in remarkable agreement with the analytical solution of a recently proposed model for food webs.Comment: 4 pages. Final version to appear in PR

    Environment-dependent prey capture in the Atlantic mudskipper (Periophthalmus barbarus)

    Get PDF
    Few vertebrates capture prey in both the aquatic and the terrestrial environment due to the conflicting biophysical demands of feeding in water versus air. The Atlantic mudskipper (Periophthalmus barbarus) is known to be proficient at feeding in the terrestrial environment and feeds predominately in this environment. Given the considerable forward flow of water observed during the mouth-opening phase to assist with feeding on land, the mudskipper must alter the function of its feeding system to feed successfully in water. Here, we quantify the aquatic prey-capture kinematics of the mudskipper and compare this with the previously described pattern of terrestrial feeding. Prior to feeding in the aquatic environment, the gill slits open, allowing water to be expelled through the gill slits. The opposite happens in terrestrial feeding during which the gill slits remain closed at this point. In water, the expansive movements of the head are larger, amounting to a larger volume increase and are initiated slightly later than in the terrestrial environment. This implies the generation of strong suction flows when feeding in water. Consequently, the kinematic patterns of the hydrodynamic tongue during terrestrial feeding and aquatic suction feeding are similar, except for the amplitude of the volume increase and the active closing of the gill slits early during the terrestrial feeding strike. The mudskipper thus exhibits the capacity to change the kinematics of its feeding apparatus to enable successful prey capture in two disparate environments

    A Synergistic Approach for Recovering Occlusion-Free Textured 3D Maps of Urban Facades from Heterogeneous Cartographic Data

    Get PDF
    In this paper we present a practical approach for generating an occlusion-free textured 3D map of urban facades by the synergistic use of terrestrial images, 3D point clouds and area-based information. Particularly in dense urban environments, the high presence of urban objects in front of the facades causes significant difficulties for several stages in computational building modeling. Major challenges lie on the one hand in extracting complete 3D facade quadrilateral delimitations and on the other hand in generating occlusion-free facade textures. For these reasons, we describe a straightforward approach for completing and recovering facade geometry and textures by exploiting the data complementarity of terrestrial multi-source imagery and area-based information
    • …
    corecore